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~-~~obtaining a we.L’ -osed mathematical model with time scales suitable

for large scale atmospheric flows . Three types of conditons are
considered at the lateral boundaries : 1) outflow , 2) inflow (driven’
velocity is specified and is essentiall y independent of the internal
flow , 3) inflow (passive) - inflow is created pri~narily by the inter
flow conjjg~ration . The upper boundary conditions include the-
two derived~4~-t1t, the continuous and discon tinuous boundary

f conditions , and a third condition , which is designed to allow the
flow to propagate independently of the height of the region .
Numerical solutions are obtained for various test cases , and
convergence of the calculations is demonstrated. One sees that , although
the calculations are reasonable , both from a mathematical and
physical standpoint , the various calculations differ from each
other very significantly, both qualitative ly and quantitative ly.
It is suggested , therefore , that the process of specifying and
evaluating boundary conditions will proceed more efficiently
if more physical under~;tanding is obtained in regard to relative ly
simple flows , such as a wave entering a stationary flow r.t a lateral
boundary .

(i i  P. G o r d o n , “Q u a s t s t ~’adv P r im it lye Equat ions with Assoc iated
U ppt ’r B o u n d a r y  C o n d i t i o n s ” , J. M ath. Ph ys Ics , V.20 , A pr i l , 1979.
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Lateral Boundary Conditions for ~~asisteadL

Atmospheric Flows

Section I: Introduction

In ref. [1) quasisteady equations were derived on the basis of scale

assumptions approximately satisfied in large—scale atmospheric flow. Several

upper boundary conditions were also derived , hut the lateral boundaries were

severely simplified . The underlyin~ philosophy used in the above work was as

follows: Assuming that the complete time—depend~”nt problem is well—posed

(this includes specification of boundary and initial conditions), der ive internal

equations and boundary conditions by emnloyinp, clearly stated scale assumptions.

In the present naper, an attempt is made to extend this approach to include lateral

boundary conditions. .

Difficulties with boundary conditions , particularly at free boundaries~

arise in almost all areas of fluid dynam ics. In the case of supersonic flow,

the problems are generally simpler , since one can expect perturbations at such

boundaries not to feed back upstream (see, for example, ref.[2]). Mathematically

the hydrodynaric equations , renresentin~ a hyperbolic system , are reasonably

well understood. This is particularly true for the one—dimensional case , although

in two or more space dimensions , the existence and unioueness theorems are not

80 well formulated [31. It is in fact physical understanding that is lacking:

It is perhaps impossible to specify physically “accurate” conditions at these

free boundaries. This situation, has so deteriorated that the scientist engaged

in computational studies feels free In many instances to ignore the physics and

mathematics. Chen [Is ] discusses “...computationmtl boundary conditions, in contrast 
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_ _ _ _ _  _ _  . .

to physical boundary conditions which are original ly required. .  .“ Also ,

in his survey article [5, p.191, Belotserkovskli can write as follows:

“..,the basic principle underlying the statement

of the conditions is that no substantial di sturbances
should penetrate through the “open” boundaries of’ the

region into the computational region.”

Various authors have written of the necessity of neither over-specifying

nor under—specifying the number of boundary conditions [6,7,8]. In large

scale atmospheric flow an additional stumbling block presents itself: Because

of “simpl i fying” assumpt ions , such as th e hydrostatic assumption , the equations

are no longer hyperbolic . The onestion then arises anew as to even the proper

number of boundary conditions. The paner of Oliger & Sundström [0]  would seem

to indicate that there is no “proper ” number : A ma~or result in this paper is

that the hydrostatic model is not vell—~osed mathematically .

The above i’esult has been quoted often In the last few years. Unfortunately ,

at least in the author ’s view , the result has at times been ~nt.i’rpreted to mean

that the researcher (since the equations are not well-nosed anyway) can now

experiment freely in terms of boundary conditions. In fact , Ol iger and

Sundstr~m ’s work does produce the expected result : Having made quasisteady

assumptions (the hydrostatic enuation represents such an assumption), it should

not be surprising that not all boundary conditions are still compatible.

This turn away from the physics is disconcerting . Historically , mathematics

has been productive to the applied community when closely tied to the physical

problem. Hadamard [10], who seems to have first introduced the concept of a

well—posed problem, emphasised the importance of maintaining contact with the

physical problem . In (10 , p .32] he writes as follows:
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“... But it is remarkable, on the other hand ,

that a sure guide is found in physical interpretation :

An analyt ical problem always being correctly set, in

our use of the phrase, when it is the translation of

some mechanical or physical question. . .
Hadamard ’s specific concern was different than ours (he was objecting to

the mathematical assumption of analytic data) ,  but h i s  point is still valid.

It appears to the author that in the area of computation the atmospheric

physicist has relinquished much of his responsibility to the mathenatician/

numerical analyst . This Is not intended to disr’arage the latter (if anything ,

the author would bo so classified). T~ather ,the intent is to emphasize the

importance of at least partially judging the results of numerical computations

on the basis of the nhysical problem that one nostulates Is being solved .

For exam ple, “reflective ’ behavior at a boundary may in some sense be

undesirable , and its ex istence may in some sense he sb~nificant for diagnostic

purposes. However , such a phenomenon remains at best u synptom . Since one

does not define a physical nroblem by specifyin~ “non—reflective”, neither

should one impose such a criterion on the mathematical formulation. And , needless

to say , neither shouli it he imposed on the numerics.

One nossible procedure for spec ifying out4’low boundary conditions is to

first assume physica)ly a relatively simple form for the solution outside the

region , and then specify boundary conditions associated with this flow. (one

boundary condition nroposed in this paper is of this form). In the atmospheric

case such a rrocedure is difficult because so few “simple’ solutions are known.

This is particularly due to the ‘fact that in an atmospheric environment even

simple flows , such as a wave entering from a lateral boundary into a region of

stationary flow, have extremely complicated solutions. Nevertheless, th is lack

3 
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of knowledge is highly detrimental to both the process of snecifying

boundary conditions and to the dvaluatlon of corresponding calculations.

The point to be emphasized is that the boundary conditions , however

specified, must be interpreted physically in terms of what is inherently

being assumed regard ing the external flow configuration . This philosophy

does differ greatly from that employed by most atmosrheric scientists engaged

in numerical calculations. Many of the techniques presently in use (see,

for example , Orlanski [11], Perkey & Kreitzberg [12]. and Kemp and Lilley

[13)) share the common characteristics of’ not referrin~ to the external flow.

Boundary conditions are discussed for the time-d~nendert case in Section II

and for the quasistead,v case in Section III. Calculations using these conditions

are described in Section IV, V and VI : section IV considers a problem

involving internally generated flow, Section V considers a bell—shaped wave

entering at a lateral boundary , and Section VI considers a “flat” wave

entering at a lateral boundary . Section VII summarizes possible ,conclus ions

of the study.

An accuracy study , in terms of a decreased mesh size , was conducted for

all. calculations. Results of this study are shown for the hell—wave calculation

in Section V.
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The variables t o  he used sr. similar to those ~ie~”~tted in ref. 1. except

that the velocity component s are no~ nc’raaltsed:
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c 2
~ ~1j+a’

V • - ( ~ •-rv -~~~~~ — - w (3.1~)T C L n  (y—1)w ~
__

S U U
— — -~~~~~~~~ - - — - . — — - —  v~~+ -  - ( a  + r a  + - . a )

(y_1)’v~,/j’~ l+a ’ ~ ~ 11

The various parameters defined above are as follows:

a C /~ , r — + w~~ + u~~ , y 1 + R/c c2 =

p/P0., T T/Th, f1 a position of the lower boundary .

position of upper boundary , ~ = density, T = temperature,

w • vertical velocity. u • horizontal velocity . F ~as constant,

c specific heat , x • horizont al di stance , z vertical distance,

t t ime , g • acceleration due to gravity, r rressurc ~ c~RT, and

are referenc e values.

The equations for the floating top and for the continuous and discontinuous

boundary conditions (1: eqs. 10, 15, 21) take respectively the following form:

(f ,)1 W/1+a~ (4 .1)

~, 1~ c (4.~~)S

1~ 

:

I. ) (4 .3)( ~~~~~~ - ~~~~~~&(f2) : “

Resark: In ref. 1 the discontinuous boundary condition was written incorrectly

in that the scale factor (1 + a2) ’S was omitted from the first term on the right.

6
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A solution is to he obtained in the region ~~ 
< 

~~ , ~~ 1 ,

0 < I t ntj• Before considering the boundary 1t i~ ’i~ for e q. ( ~~) at

the four spatial boundaries, a general condition will be di~;cussed.

A simplified one—dimensional model consist s c~f the following eq~attons :

— — 

(~—l)~ 
“

~~~ 

( S .l~

• - (~~-l~~iu~ ~~~~~

Asswuin~- a steady wave , moving wi th  velocity 
~

‘ , ~‘ne ‘ wt t ~ hes ” the veve

front aer~roach 1w the •quat ion ,

U t  W

Suhst itut I n~ eq. (5.3), eos. (~ . 1) ~~ ( c . .~ ) talc~’ he ~~ ~~w I n~ form :

C .
— c~-i~~ç ~~~~~~~

‘

• (~— l~~~ ~ ( c , s~t cw t

In the case t hat c x I ~t i s • ~t ~und wave ‘~ • . ( . ~. ‘~ :~nd • ‘~ 
)  hot h

V S

become the following :

U : -~- -- ~ - - . ,~I ~~~~~~~~~~~~~ t 
. (

~ ‘•(‘

Eq.(5.6) has been used a~ a boundary ~‘onditIon i r ~ c~ r~~Ier  work [l~ ,l”1. where

the following physical interpretation was given :

At a boundary ca. (c . r m~de1 s ~ sound wave,
moving into an infinite region of undisturbed
flow .

~q.(5.6) will be used in this paper as a boundary conditon . P~n obvious

objection would be that the problem of most interest in atmospheric situations

will not be sound—wave dominated . It- j 5  teiuptinc’-. therefor e, to use e in eq.(’- .3’
~

as a “fudge-factor” by which one could obtain various t~ rr~s of either eq.(5.~~)

_ _ _ _ _  . - - - .  — - -  - - —~~--—- -.- -— —~~~~~ -



~~~~~ .uu r—-~-

or eq.(5.5). This approach has been avoided , and in this regard the following
points are nertinent :

1) The philosophy of this paper, as discussed in the
introduction , is that the boundary conditions must

make an assumption in terms of the external flow. It

is incorrect , there~’ore , to calculate c adantively!I

from conditions of the internal flow.

ii) If specific two—dimensional steady—state solutions

to atmospheric problems were known , then nerhans these
solutions could be used to derive more appropriate boundary
conditions.

Specific boundary conditions at the four spatial boundaries will now be given.

A) C = 0 is assumed to be a solid boundary. An ~ppronriate boundary

condition is ‘= 0. One can then obtain 0 and~~ from eqs.(3.l) and (3.2),

while w can be calculated from the following eauation :

C C •

( i T  W ~~
( 

~~~~~~~~ 
G2 — 0

3 
) (7.1)

Eq. (1.1) represents the linearized characteristic variable which propagates

information from ~ > 0 to 
~ 

= 0.

B) Because of eq. (~~.i), t = 1 is a streamline and consecuently one and

only one boundary condition is renuired here. The three differential equations

to be used are eqs.(3.1) and (3.2), and the following character istic equation:

C C

(y—fIw ~~ I (y—1)ii ~2 
+ 03 

) . (7.2)

Three upper boundary nonditions Viii be considered.

1) Eq.(le.2): This equation was derived mathematically in ref (1] as the

continuous boundary condition. The interpretation given by (6) is not entirely

valid here because the 4erivative in eq.(b.2) is with respect to I and not t.

8



Thus , with this boundary ‘onditlon . the floatin- top pushes a line of

constant pressure ( namely ç = 1 ) into the “undisturhe~I
’ region and then

superimposes the change dictated by eq.(~~.2). ~n essence, the characteristic

variable of eq. (7.1) remains constant as it propagates from ç > 1 to ~ = 1;

this , of course, ignores hydrostatic changes fa~ abov e ~ = 1..

2) F~ .(li .3): This e~matjon was derived in ~i1 as the discontinuous

boundary condition . The physical interpretat ion is that the flow at ~ = 1

behaves as a weak compression wave movin~ into a re”ion of relatively undisturbed

flow. However , the assumr~t ion now is t hat the wave a.’t’~ at the moving boundary

with respec t to the undisturbed hvdrostat~c pressure at that position . That is ,

the change dictated by en.(~~.2) is Imposed on the undis urhed region above

• l~ the second term on the ri~’ht in eq.(l~.3), ~or w ‘ 0, accounts for the

hydrostatic chan~e in pressure. Interpretation ((j) would seern, therefore , to

be valid for this boundary condition .

3) Both eqs.(b .2) and ( L 3) assume that the ~‘lov above~~ = 1 is relatively

undisturbed . There are situations where this r’hysica~ ~tssumr’tion is clearly not

justified . One such example would he that of an inconir~ lateral wave , with

the a s sum p t~ c-n that the wave is also entering above the region of computation .

A possible physical assumption for this flow would be as follows: The flow

above 
~ = 1 propagates laterally in a one-dimensional fashion , without being

significantly affected t-’y the flow below ~ = 1. This is modeled mathematically

by eq.(5.6), with interpretation (t.). TransformIn~t to . one obtains the follow ing :

1
~T 

+ Ct~C 
+ (8)

C) At the lateral boundari~s, three boundary conditions are required for

inflow and one otherwise (assuming subsonic flow). At a non—inflow point

0 

~~~. . .- , .. -— 
_ _ _ _ _ _ _  -



eq.(3.l) can be used along with the following linearized characteristic

equat ions :

v
~ 

— (aG
1
._G
3

) (9)

± w + a’~ = — (G1 ± 
c ,1 2 

+ a0
3
) (10)

In eq.(lo), the plus sign is used at n 1 and the negative sign at n = 0.

As at the other boundaries, the additional boundary conditions must reflect a.

physical assumption regarding the outside flow. At the non—inflow points it

was decided to use either eq.(8), with the same physical interpretation, or

the condition U = 0.

At inflow points, en.(lO) — with the appropriate sign - can be used, but

three additional boundary conditions need to be speci4’ied. This is particularly

troublesome for 0 because of the fact that perturbations in 0 propagate so

slowly, namely at the flow velocity: th~- Computational times to be considered

in this paper are far less than the approximately ii, hours required to traverse

500 kin, at iOn/sec . It was dec ided , therefore, to assume that 0 is not perturbed

by outside flow. Physically, this would imply that 0 is constant on incoming

streamlines, but it is not so clear how best to interpret this mathematically .

The following equation was eventually settled upon :

O + r O
~~

= O. (11)

In order to determine the remaining conditions , it is necessary to distinguish

between “forced” inflow and “passive” inflow. Forced inflow , which represents

physica).ly an external flow being imrressed on the rey’~ion , can be modeled simply:

Either velocity or pressure is snecified . For purposes of the present paper, it

was decided to specify velocity:

u h
1
(t,z) (12.1)

‘
= h~(t,z) (12.2)

. ..

~
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( I~qn. (ia) and (ii), then , essentially determine ‘ and ~~~~~ However , the

eecond case , where flow is In effect pull~~ lnt ’ the rr~ 1~ n because of’

internally produced gradient.s, In more complicated . t~n~’ possible phyn~cal

assumption would be that the wave enter- an a ~ ‘und wave normal to the surface.

Mathematically, thi s translates t ’  oqn.(~~ and w

~ummari lug , eq . ( st inter (or t~oi ntn an~t the ~~ low I n~. equet ions at

boundary po in t s are assumed t o  dr’fine a wel l—t’ose~1 mat.’~emnt .i”ai t’orniulat. ton

of a we1l—deftne~t phys t ci I proh~ em

i ) r_ ~ w d , (1 .1 1 , ~~~~~ ( r . l ~~.

it ) ~ • I: (Li) . ( i,:’). ~~~~~~ nnd one .~f [ ( ~ . ‘l ,~ h .  ~~~~~~~ ~i

i i i )  ~ — o ~~~~
‘ 1:

~) non-inflow : ( ~J ~~~~~~~~~~ u (IL i)

~~~~~ ( i ~~’,(~~). (i ~~~
t~) r,~1’ s ’0,i I n nl~ w (i~~ ,~ ii , ( L’. • 1 , ’. .‘~~ (1 L”)

) 
~‘i~~~~~.i ~C1 ow:  ( ~ , (li ) , ( a ) ~ ( ~ I. ( ‘)

l’hr shove (ornm tat. (on dot’’~ not ~‘ on~ (~j er  he ~‘ ‘~-ner r’’ t ut : ( n 0. c — 
~ 
, I

~eve rat  severe pr obl em s , which have t~re~ .‘o~~ I -it ,‘,i t v I ~n,ir,’t in 1 hr I It er a ture  •

arise at. these points:

I ) There are two sets of ’ e lnat ions , ~~~~~~~~~~~~~~~~~ i n~ t o  I he tw o

bounder lea , t hu t  can be used . (leneral 1 y • our at. I empta t o use

those relet . I onahi ps which are ror ’ I n~’ t he I ow con ft gurat. I on.

~or example , an al~ ehrstc bnundar~ con l i t  ion , beca~ise of c o n t in u i t y

requirements , in considered forcing.

I i) :~1 nec the linear I ~ed ‘herac ten at Ic equa t tons are in general not.

f 
- 

valid , it , ma.y become t~eceasnry to ~ise a partial differential equation

d ir e c t ly .  ~‘or example , if  t h e  flow in t~ein~ forced at ~ a 0,( then it in reesonahl~ t~ impose e~p:.(L~.l~~, and (L’.~’), w i th ~~~~
and to impose P , nay w i t h  s q , ( l i ) ,  but. one expc~t.s to  calculate a

from the internal f low . However , n e t t . l i c ’r eqs. ( 1..’) and ( 7 . 1) ,  from
the ~ -‘ 0 set , nor sqn.(lO) and (1.1 from the n • I) set .. can he

applied . In th is cas. one m igh t  be forced t o  use eq.(1.~~) ,  a~ —

directly .

~~ H 

~.



Section III: Specification of I~oundar~ Conditions for the Q,~asisteady Model

The quasisteedy equations are obtained from eq.(1) by assum ing that a

are in quasisteady equilibr ium with respect to 0 and u [l).

The following equations result:

8 — rO — 

~ 
6~ unchanged (iis.i)

a J (l ’ .~~)

• 0, (i~ .i)

Cl
3 

a o. (i~i .h )

It remains now to study- the effect of the quesisteady assumption on the boundary

condit ions.  The underlying princ i ple is ~~~~ follows :

If a boundary equation involves n or v , end V the (15)

equation involves f low conditions thterna~ to the re~ 1on

of comr’utatlon , then the ceustion will be put. in quasistea~y

equil ibrium .

At ~ a 0 the situation is rela t ively simnic .  w • 0 and rqs.(Ll) and (1.2)

rema in unaffected by the quasistea dy assumption . Accord i ti~ t o  (1;), however ,

eq.(7,l) becomes a quanjateady equation . Thin means thst the right side of

eq.(T.l) is set to zero. Because of eqs.(l)i .l) and ~~~~~~ then , eq.(1.l) is

deleted from the system .

At ~ a a similar analysis holds: Fqn,(Ll) and ( L~~) ~re still  valid , whi l e

eq.(7.2) is deleted. On the other hand , the upper bo~n lary condition s are unaffected

by the quesieteedy assumption: Although involving guaslst.eady variables , these

equations do not require internal conditIons of the flov~ in fact , the “derivation ”

of these equations related to external flow conditions . 

~~~

. ..... 
. 2.~... 
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At the lateral boundaries a more complicated situation exists. First note

that eqs.(lie.3) end (1L~.~ ) were derived only at internal points of the flow and

need not in princ ipal be imoosed at the boundaries. However , if these equations

are not used at the lateral boundaries, the resulting solution may exhibit steep

gradients. Such gradients will be inconsistent wi t h the scale assumptions upon

which the quasisteady equations are based [1, assumption 2]. (ThIs perhaps relates

to the discussion in the introduction regarding the results of Oliger and ~undstr
’
~m).

One concludes as follows:

The basic quasisteady assumrtion 1] , ar.sumption 2] requires
that eqs.(lls.3) and (i~i.i~) he applied at all noints of the (16)

lateral boundaries excert ~ossthle at th’ corner points.

As noted in ret. [1], the effect of the quasisteady equations, eqs. (iI~.3)

and (lI~.~ ), is to remove Internal time dependence from the variables a and ~

Boundary conditions must account for the time—dependence: w = 0 at 
~ 

0

accomplishes this for w and the upper boundary condition rrovi~es the t ime

dependence for a. It is important to note that eqs.(~4.~’) and (~ .3) provide

time dependence relative to the upper flow, while eq.(8) also relates to the

external lateral flow; therefore , if eq.(R) is used at the top i t is necessary

to consider the possibility of incurring inconsistencies at the lateral boundaries.

Consider first non—inflow points and assume the upper boundary condition Is

either eq.(14.2) or (~~.3). If the lateral equation set is ‘iven by (13.3), one

would use eqs.(3.l) and u = 0 for the quasisteady model , and if the lateral

equation ~et Is given by (li.b), one would use eqs.(1.1) and (R). If the upper

boundary condition Is given by eq.(8), the situation remains the same for equation

set (13.3), but an inconsistency e.an arise with respect to equation Set (l~i.~s).

clearly near r~ • 1, eq.(8) cannot be used to calculate u “laterally” and a

“vertically” . In this case , sinc e it seems reasonable to assume that i can be

obtained from the internal flow, eo.(3.2) has been used directly (this assumes

11 

. - .-~~~~~ 
_ _ _ _ _ _



that the required time-dependence at the lateral boundary is provided by the

upper boundary condition in conjunction with the quasisteady equations).

At forced inflow the situation is reasonably clear. Eq.(lO) is deleted

from equation set (13.5) because it involves Internal time derivatives of

quasisteady variables, and the algebraic equation (12.2) is deleted because

It is inconsistent vith the quasisteady equation, eq.(l~~.3). The remaining

equations, eqs.(l1) and (12.2), are used with the quasisteady model.

At passive inflow points eq.(ll) can still be applied in the quasisteady

case. As above, eqs.(lO) and w = 0 are deleted. The remaining equation of

equation set (fl.6), namely eq.(8), can be used if the upper boundary condition

is given by eq.(~~.2) or (L3). If the umper boundary condition is given by

eq.(8), then the same incons istency, as discussed above, can arise if eq.(8) is

also used at the lateral boundary. This situation has not yet been resolved.

One possible solution might be to again use eq.(3.2) for ~a (perhaps it is in

some sense the “residue” of the quasisteady limit process relative to eq.(1O~.

Further study is required for this case.

Summarizing, the quasisteady model consists of eqs.(lh.3) and (l1~.14) at

all points and eqs. (lI .1) and (1~ .2) at all points except nossibly q 0 or 1.

v =  0 is imposed at ~ = 0. The additional feasible boundary conditions to be

used in conjunction with these equations are summarized in the following table:

Top Boundary non—inflow forced inflow passive inflow
Condition 

___________ ___________________________

(Ie.2) or (14.3) (3.1),u = 0

or (ll),(12.l) (]i),(8)

(3.1), (8)

(3.1), u 0
(8) or (ll),(12.1) (11), ?

- _.i- (3.1)~ (3.2J _______________ _______________

TABLE 1

1~4 



Section IV: Internally Generated Outflow and Inflow

The basic numerical scheme can be found in ref.[l] and will not be

repeated here. All boundary conditions are solved implicitly ( that is , at

the forward time step ) .  For example , at a lateral boundary eq. (3.2) would

be differenced as, —
~~~~

- 
~~~~ — ~~~1

’

) ~ ((
j )~~~~ where one—sided differences

would be used as required . since eqs.(114.3) and (i1~.b) are also solved

implicitly , the iteration problem becomes complicated .

The initial data used for the test problems in ref.[l} consisted of a

stationary flow with a lateral pressure ~radient in ~i r’~~ion Y~ heh~ht h •~nd

length L. Because the lateral boundaries were assumed to he solid walls (u = 0

was the boundary condition), the flow thereby generated ~ir~ ’eeded to ref1eet~ from

the boundaries. In the present study , the right boundary will, he a tree boundary .

The lateral boundary conditions must therefore allow the  flow to move through

and then , as it turns out , to move hack into the re’~ion . These results will be

compared with the following test case : The region is trinled to length IL,

initial  data in 0 < x < L is as above, data for the additional region Is stationary

flow with no pressure gradient . This latter problem is soived with the quesisteady

model and u • 0 at the lateral boundaries. During a reasonably long time period ,

during which the results at x L are Independent of the boundery conditions

imposed at x 3L , the results obtained with the lar~e re~ ion can be compared w i th

the tree boundary case.

The initial flow field , for the region o c x < ~4~~O km. • I , is as shown in

f 1g. 1 (this is reproduced from ref.[]fl. w and u are sero throughout at time

zero. Overpressure, with no pressure gradient in L ‘ x 3L, is shown In fig. 2.

For this test case the continuous upper boundary condition , eq.(Ie.2) was used at

• 1, and U ~ 0 was imi~osed at r~ • 0 and 1. Figure 3 shows pressure at a • Q

for various times. Initially a “secondary ” pressure front forms near x • L (this

can he seen at t • 1600), but by 21e00 see , this front is moving toward the right

- 
~
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boundary . This pressure distribution is accompanied by a reverse flow ; this

can be seen from figures ie and 5, which display the u dis tr ibut ion at C • 0

and C * 1.

Ideally , one would now l ike to specify boundary condi t ions  at x • L so that

the solution thereby obtained would reproduce the above flow in 0 < x < I.e. It seems

fa i r ly  clear that for a problem of this complexity such a goal cannot be

attained. Nevertheless , because the flow Is internally generated , one can

expect to obtain the following with proper boundary condi t ions :

a) The flow should be qualitatively correct (in this

case outflow and reverse flow should occur in a

generally appropriate time scale).

b) c~uantitatively, the results should be comparable.

If inflow occurs, it will be nassive inflow. Thus, the following boundary

conditions are used (see table 1): At x • n = 0. u = 0 and eq.(3.l), and at

x/L • • 1, eqs.(8) and (ii). -

Th is solut ion was run until time ~O0O sec . In ref. tl] it was shown that

the oscillation time for this boundary condition was approximately 1600 sec.

This implies a wave velocity of L/l600 ~~~~~~~ 
.-~~~-- , or about 6~OO Sec. would besec,

required for the wave to travel from L to Th and back. It was felt , therefore,

that for this time period the results should be independent of the boundary

condition at x • 3L.

Boundary condition (8) is intended to represent a situation in which the

external flow is undisturbed . Clearly , for th i s  problem this assumption is not

valid near x — L. However , it perhaps is satisfied for the flow sufficiently

distant fr ost x a

Figure 6 compares the pressure distribution at two times . The solid dots are

the results using eq.(8) at x a L. At time 800 sec . the comparison is very good,

while at t ime ~000 sec . some discrepancy can he seen. Figure 7 shows the comparison 

-~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



in u at the top surface. The effect of ect.(8) seers to he to delay somewhat

the develo~mtent 01’ reverse flow . The author ,~udge~ thi s comparison to be good :

In addition to maintaining the time scale ~f the nroblem , the results remain

reasonable quantitatively also : It m i~ ht perhaps also be noted that this is

considered to be a difficult test case , particular y bee~use of the combined

inflow—outflow configuration at x • L.

It seems reasonable to suprose t hat even bet t er a, reement could he obtained

by appropriately “tuning ” the factor c in eq.(8~ . ‘ cr the reasons discussed

in Section II , such a procedure was not attempted .

A calculation was also made with eq.i~~.~’) ret t~ in~ the boundary condition

eq.(8); that is , ~~~

‘ 
Is calculated at tho boundary x • ~. . The nhysical significance

is not clear , particularly because th~.s condit ion seems to make no direct assumption

regarding the external flow . It is Interesting ~~ note  t herefore that the results,

not shown, are sensible numerically , hut show fl t tle arrerment with the results

obtained with the large region . For ~‘xamnie , at t ime ~~C~C’ sec., the pressure

distribution has oscillated back essentially to the ~i1strthution existing at t ime

800 sec .
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Section V: Bell-Wave InDut at Left Boundary

For this case the in it ial flow is stationary and hydrostat ic : ~~~~~~~ } !!~.
— 
(i L)i 

, A(0,x ,~ ) • ø(0,O,a) and e(o ,0 ,z) is as in the test case of Section IV

El , eq.(22.8)~ . At x — 0 u is specified as a function of time:

/ ~ 2/(16 u (_.t ‘
~ (1 — ~~ ‘I : 0 < t < cniax~ c 1t ~,, c1, 1

ii(t .O ,~ ) —j (17)

L o: t ‘

u thereby achieves a maximum of u at t c /2 .
max I

The first calculation uses eq.(8) at the upper boundary . Consequently, from

table 1, eq.(ll) and (12.1) were imposed it t. n = 0 and ens.(3.:’ and (3.2) at

n 1 (note that inflow at vt • 1 does not occur for this case). The values of

u and c
1 were taken respectively as 2.5 and 3200. Figure 8 shows the ~e1oc ity

distribution at the top surface for various times. At time 14800 see. this wave

has left the region , and the flow , except for a small perturbation of approximately

14%, has returned to a stationary flow.

This residual flow, which arparently proceeds to oscillate hack through the

region with values ~~ < .1 and lv i < .005. does not seem to he numerical error .

Rather , it arpears to be related to the difficulty noted in rec~.1on II of achieving

a true steady—state solution. This difficulty is due to the slow time scale of 0.

At time 6000 sec., the variation of 0 from its values at time zero is still on the

order of io~~; this is sufficient to maintain pressure gradients to account for

the values noted above. To partially check this statement, the calculation was

repeated with 0 held constant throughout the region (0 . 0~ =l.05 ) .  The “residual”

values of velocity in this case were c .001 and ~wJ < .0001.

The shape of the wave form , as a function of time , is shown in Figure 9. The

curve labeled x — 0 represents eq.(l’l’) for the conditions given above. The curve
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labeled x I.e represent s the velocity curve as it exits the region at the

upner boundary. Sinc e the region was in i t i a l ly  in equ i l ib r ium , one expects

the wave to move through relatively unchanged . The curve shown for eq.(8)

indicates that this is the case. In addition , there is no damping of the wave.

The exiting velocity curve at z 0 is similar to that shown in Figure ~~~, except

that the maximum value is 2. .?~ S.

This problem was next solved with the other two upper boundary conditions .

From table 1, eqs.(11) and (l~ .i) are used at n 0 and ess.(3.i) and (8)  are

used at n 1. Again , the sha~’e of the curve is naintained veil. The vertical,

distribution is somewhat more pronounced for this .~tse. Ycr example, the max imum

outflow velocity at ~ (~ Is ij 
~~~~~~~~~~~~~ while th~ maxi”um value of u at ~ ~ 

1 is

p.505. FIgure (10) shows the hori~~ nta1 velocity ~iist r tion at c 0 for

various times.

For the discontinuous boundary c,m~iition , ~~~~~~~~~ ~ h~’ results are markedly

different . Since a small ‘pressure ~r~i1ient Is r~~~ nt~t i n t ’d at the top surface,

horizontal velocity falls off rapidly at the top. In ~~~~ as noted in Figure (11),

the wave does not reach the far høunthtry, hut ir .stt’id dt’cays rat-’idly. This would

indicate that a large amount of’ energy is being ss1pat e.~ to the outside upper

region . Velocity at ~ 0 does bui ld up more comp1otel~~: The max imum value of

u at (~ • c~, n — ~~) Is 1.’-~ and occurs at tinc ‘~~~i
’
~ see., while the maximum value

at the r1~ ht boundary (c— 0.n—l) is .1 and occurs at tine ~~~~ see. By time

leSOQ sec.,a complete reverse flow exists.

It was also thought of interest to combine th e uprer boundary condit ions.

Eqs.(8) and ( 14 .3 )  together make little sense, since each contains a hydrostatic

pressure term. However, eqs.(8) ~nd (14.2) produce the ~
‘c’1lov ing equat ion :

(y —]jw w + 
(y—l)x 

~
j  + C 7~ ) — C w

c8 t 1 ~~~~

Although the precise physical interpretation ot’ es.(l8’) is not completely ch ar,
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the idea is to corbtne both a vert ical effect , namely en.(14..’). with the horizontal

effect given by eq,(8). Figure U’ shows results of the calculation using eq.(i8)

at the top and eqs.(...l) anti 
~~~~~~~ at the right lateral ~ount~ rv . It is seen that

the wave form is much like that obtained with the indiv ~~tua I •‘‘~~~t ions (compare

with Figures 8 and 0). However , there is an important ‘ist i ~~ t ion in that eq.’~l8’~

produces some damping of the wave form : The maximum vaiue c ’ u :tt p • 1 is ‘. ~~~~

and occurs at approximately t a ~~~~ see . This damnin.? arpears to be totally an

upper boundary effect, unrelated to the lateral boundaries : ~ote that the wave

Is already derressed by time 2LC~ Sec. A~ so , ~‘o~1ps r i s o~ ~tt :~:: i’sriier t ime , before

the wave has propagated into the region , ow s no &prrocis~’i~ ~Vference betwt’en

the three cases eq.(~ ), eq.(14.:~ , and eq. i~l$~~.

The three boundary conditions , ~~~~~~~~~~~~~~~~ a::~ ~~~~~~~~ differ in another

imr~rtant characteristic , namely dependence on height . ~~~~~~~ was “designed ” to

minimize this dependence: The ~~vsical asstimption t h s t  e •~~~~~~~~s t iso being

imposed above ~ — 1 indicates that the wave nrofile at • I ‘~“ouId be relatively

unaffected by the height of the lower region . This was v e r i f ’~’,i by a calculation

with a height of c kr~. instead of 1~ km. “be other two ~‘ound~r~ condition , however ,

assume undisturbed flow above * 1 and cc’nse o~.o nt~ v ‘uld b~’ bei.tht dependent.

This dependence is reflect ed in the fc’~~ of the e~uatio’~s: ~~~~~~~~ and (L~~
involve vertical velocity , wh ich is a quant i ty very sen~~i t i ve t o  height .

Figure 11 coun~ res two calculations , with heights o~’ U’ k:’. and c km.

respectively , both using en.(h ..’) at. the ten and the ssr~e lat eral boundary

conditions as discussed earlier . Two features ~~~~ the “~~ow are particularly

interesting :

1) The smaller region propagates the wave more slowly .

Th is is ~erhape as expected, since vertical ve1oc~ ty

Is smaller *nd consequently pressure builds t in more
slowly.



2) There is a damping effect related to hei~ ht. The

5 km. case produced a maximum out)et velocity of
1.89 rn/sec., while for the 10 kin . case the “aximum

outlet velocity was shown to be 2.505. Perhrt~s for

th i s  combination of wave input and boundary condition
the height of 10 km. is some kind of ‘ mar~ic number” :

At this height the wave propagates across the field

in a relatively unperturbed manner .

Clearly , there is a significant mathematical relationship between the wave

input , the height of the region, and the upper boundary condition . At the

present time what one requires here is a physical explanation of this relationship.

As discussed in ret.[i], the floating top is an important part of the model.

Figure 114 displays the motion of the to~ for the case with eq.(8) as the upper

boundary condition . In general this motion parallels the velocity profile, as

can be seen by comparing with Figure 8. This was also tr~ie for the cases of

boundary conditions (14.2) and (18). The maximum nerturbation for each of the

three cases (using eq.(8),(14.2), and (10) respectively ) was 87.6 m ., 81.T 5in.,

and 87.14m. For the discontinuous boundary condition , eq.(h.3), the top boundary

rose 2141.5 in.

As in the test case of Section IV, the lateral boundary conditions were

tested by increasing the length of the region . The region was doubled in length,

with the boundary conditions formerly Imposed at x L now being imposed at

x = 21,. Figures 15 and 16 show typical results of this investigation. This

part icular data is from the case vit~1 upper boundary condition (18) and right

lateral conditions given by eqs.(3.l) and (3.2). The solid lines are the results

obtained with the doubled length , while the solid dots are the results with the

original length of 1480km. The agreement at C = 1 is very good, while some

discrepancy builds up a C = 0. The author concludes that these calculations
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give strong assurance that the lateral boundary conditions , in conjunction with

the given upper boundary condition , are consistently modeling the hypothesized

physical situation. In this case the hyrothesized physical situation is that

of an external flow which is undisturbed “suff ic iently ear” from the region of

Interest.

Accuracy of the computat ions , relative to mesh size, is consi dered to be

an imnortant part of a numerical study . Of the three classes of problems

discussed in this naper, the bell—wave probLem of this section displayed the

steepest gradients and consequently also displayed the greatest difficulty in

establishing convergence.

As discussed in (1], one should at least be able to demonstrate that the

solutions of a numerical algorithm behave as though they are part of’ a convergent

sequence of calculations. For a first order method the following criterion was

derived in flj:

< .5, (19)

where ti]. = f5 (’rnC ,h) — f’(t,p,~~,~-) ~2 = f*(T ,n,c,k) — f*(r,fl,C,~~) ,  and

f5(t,n,~ ,h) is the numerical anproximatlon , obtained with step-size h, to the

variable f (~~,n , C ) .

For the problem using eq.(8) at the upper boundary , the following sequence

of calculations was made:

run 1: Ax = 20 km.., Az—l.25 Ion., At = 140 sec.,

run 2: Ax = 10 km., A z— .625 km., At 20 sec.,

run 3: Ax 5 Ion., Az~— .3l25 Ion., At 2 10 sec.

At time 1600 sec., the following tables display typical results for various

quantities in the flow field :

Li~~~~~ — 
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_ _ _  _ _ _ _  _ _ _  _ _ _ _ _ _ _ _

~ (t,½ ,l) ‘w(t,½,l) Af
2
(t ,0) P(t,~~,O) 

& (r ,½,½)
run 1 i.l~~ ie .o71~T 146.75 ~i~j~V~ 148 .oooo~614
run 2 1.14683 .0139 146.142 10314.938 .0000071

run 3 1.146914 .07314 146.20 1035.078 .0000075

Al -.00149 .0008 .33 - -.14oo ~~~~~~~~~~~~~~~~~~~~

A2 — .0011 .0005 .22 -.1140 . ooo00014

_ _ _  
.2 214 .625 .667 .28~ .57

Tah1~~2

~ ~ (r ,i,n )  
~~~~1,flj~~~ ,o~o) 

p ,~ j ,  _ _ _ _ _ _ _ _ _

run 11 .00514 .00141 lO~8.503 268.697 .00149

run 24 — .0002 — . 0007 1038.915 268.730 .0013

run 3 — .0011 .0012 lC)39.fl~14 268.757 .0001

- 
.0056 .00148 — .1412 — .0143 .0036

______  
.000Q .0005 — .099 — .027 .0012

______  
.161 .1014 .2140 .63 . 333

Table 3

In general, criterion (19) is satisfied very well. Al’
2 

represents the

actual motion of the top surface and 0 represents the deviation of 0 from its

initial value: In both these cases there is som e question regarding the

significance of the digits shown in the table. Note also that P(t,0,i) changes

little from its initial value (nanely 260.039), while P(T,O,O) changes much

more significantly (from Its initial value of 1029.792).



~

Section VI: Flat Wave Input at Left Bounthry

The problem Is precisely as that discussed in Section V . except that

eq.(17), the input function for u’, Is rerlaced by the following :

~ (t ,O ,~ ) u
54~~

(1_e
~~

l
T
~
) . (20)

For the sample calculation u was again 2.5 and c ~~~~ Using themax 1

upper boundary cond It ion eq . (~3) and t he lateral boundary cond I t ions (at r~ ~ 1)

eqs.(3.l) and (3.2), one obtains the solut ion depicted in Figures iT and 18.

The solution at the ton surface Is as expected : the velocity build s up,

according to eq.(20), and propagates across the field . However , the solution

at ~ 2 0 Was not expected , in that the maximum veloc i ty at n 0 did not

propagate In the expected time scale. (H.v tIme 6000 : ec’., the profile changes

little from that at time 140o0 nec . ) .  The ‘discrepancy ” t :~ nnt’roximately the

same as that seen earlier in the hell—wav e calculation .

It is clear , from simple conservation of mass cor1r,iderations, that the

solution an shown cannot be a st~~u1y-state solution . It. i~ ‘t.lso clear, from

calculations with reduced mesh ~He , that ratmerical error cannot account for the

unexpected form of the solution . One next . needs to ask whether the calculation

satisfies the original time—derendent rrohlem . This 1~ di fficult to judge, hut

if the answer Is no , then presumably the quash~t.eady “suations are not valid.

As noted In re~ F I], the quanisteady equations do introdue~’ errors into

the solution . In the present problem thI~ error can 1’~’ r~”en clearly at n 0:

The veloc i ty Input at n 0 would , with ens.( ~), produce

a pressure Increase with a si~ n I ficant non—hydrostat l~
vertical variat i on (at. least In the short term). One

expects , over the long term ,~ that the vertically propagating

“fast” character i stics will dissipate the “non—hydrostatic ”

variation . Th~ quasist.eady equations , on the other hand , ignore

the short—term t.ime—dnvclopinent , and t hereby inherently asswne
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t hat any steep gradient s at ii ~ are n~ t import ant.

— in the long term .

it is not thought that the above error vou l~( 
~~~ ew~ “or the results

shown in Figures 11 and 18. One exnects the err~ r jut roduc e~t liv the qu~uiat~*tiy

equations to he manIfested , not in the fInal flow urofites . but In the short-

term time scale. t~el ative to I he time—seal e of the pr tern , this error should

he small.

!~eferr ing to e q . ( L 2 ) ,  one seen that .  t h e  a t erm in the most Important.

fa ctor In the propagation of ~z. Thi’ coe f f i c i e n t of t hin t erm tnvolves only t~.

A osiculat Ion wIth 0 const’tnt should , then 
* 
rem~.’ve mu~’h et’ the  vert li’nl var tat iou ,

hut would not. affect I he onasi steady assurnpt . I on’~ . ‘u ~ eel en tat ion Wan made

vi th 0 ! 1 . 0’’ . in this ‘a ‘~~“ the var let I en In sound S te  ‘“t vs even more pronoutw t’~t

( c )
a bottom . . . -.

r - —
~~~~ 

I . .~2. rhe vel eel t-y t’r~’~ lea are much 1 ke hone ot I’ Igure i~
top

except slight ly retarded . However , there In no ;i .’.uuflcan t variat i on between

the top end bottom horie.ontal velocity . Furthermore , this calculation achieves

a steady—state: Ily t. tune 1414oo see • the var let- Ieu in the ~‘on it ton of t he top

surface Is . bn ( from n 0 to ~ 2 , and t. he ~~ ~ I “tu ”~ ~~t 1 nu’ of Iv In • 4b~&) I

A more careful analysis of t h e  orIginal on 1 ‘u tat I o’~ ~w it It v a r i a b le  0) shows

that the solut ion • al though not in t eddy— ct at e , I a v “r~ slowly varyt  tu s ~ . For

examp le , at t ime (‘C’0~ ccc • the var tat ton in tb” non it ten e~’ the top surface Is p

5.~~ n . , and the maximum value ci’ t w t  is .OO f ’2.  l i i  li~-ht. of the constant 0

calculation , it would anpear tt~~t. the verlatilec u ,w . -nul a are in quasi—steady

equilibrium with respect to the 0 field . (Thin nrot ’lt~n of’ the slowly vary Ing 0

was discussed in sectIon IT).

If one then assumes t hat the quasisteady model is pr.’duo i ng a va l id  solut ion

to the time-dependent problem , one then needs to ask whet her or not. the ~olut- t on

is physically meaningful. As discussed ear l ier , this quest ion has not yet been

- -
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answered. If the answer is yea , one could develop reasonable confidence in

the boundary conditions . If the answer is no , then one can reexamine various

features of the model , such as the veloc ity inpu t func ti on , ~uasiateady forts.

of the characteristic equations1 and boundary conditions. In any case , physical

significance of th e solution needs to be considered .

This problem was also solved with boundary conditions (~~~‘) and (li ..i) at

the top~ eqs.(Ll) and (8) were used at the right boundary . With eq . (~~.2) the

wave propagat es across the region in a reasonable fash i on , but a significant

overshoot in velocity (approximately lO~) occurs at the right corner point . It

Is not yet clear whether the problem is due to the  hounder conditions or to the

corner point equations.

With  e q . ( t e . 3 )  the wave propagates across the fie ld  at a much slower velocity .

This can be seen from Figure 19, which dinnleys the velocity nrofilea at ~ •

for the two cases at a f i xed  t ime . The solution with eq.(14. ~) displays another

interesting characteristic : Rather than achieving a steady-state , the flow

continues to push upward into the undisturbed flow . Figure ~ shows the horisontal

velocity at ~ = 1. Near n 0 the flow arpears to achieve a Unear profi le

rather than a constant profile. This , then , nroduces a non-zero vertical velocity

near r~ 
2 ~ , and this In turn allows the “low to push unward into the region .

Th is upward mot ion , in terms of the position of the toe surface , is shown in

Figure 21. It is conceivable that an appropriate Incoming lateral flow could

move vertically into th e less dens e flu id , rather than nronagete horisontally .

Boundary condition V~.3) could he suitable for this type of’ flow.
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sectIon Vii: Conclusions

For the moat part th i s  study is based on t he ’ following two assumpt i ons:

1) A boundary condition , by its very nature , must ref le~t
a physical assumption in regard to the external flow

configuration . Consequently, a rrononed e’tysical interpretation

should he associated with any prerosed boundary condition .

~
‘) Fq.(3) is to be solved In a region of i i e t s h t  h and length 1. . with

h<<L. It is assumed that boundary cen~~i t  ~ons and initial

conditions to he imposed on Fq.(~~ are such t hat the flow

variables viii exper i ence signIfi’~ nt v a r iut ions only over time

scales w h i c h  ar e la r~ r’ compared to  ~‘ 1 1. .

Remark : The second of the above is the basic scsle i s s ’t r ipt  ton , and was formulated

in ref .[l) as assumption (‘).

A nrtmary purpose of this ns~”r wan to i n v e s t . i~~s t, ’  f l i t ’  validit y of the

following hypotheses:

I) There exists a signi ficarul . lac k c” hysirni understanding In

regard to several relatively nimpi’-’ rio~,5 in an atmospheric

environment. This situat i on seriously hampers the process of’

spec I fyi n~ ~tnd evaluating bouindnrv ‘on It ions I.e be used In

mathematical models for lar~ o—sca.1o .‘~t.-rc~rehor1c flow.

ii) Assume that t”n .(~~), t.o~”t her with ~ tUvee set of boundary and

initial conditions , det’ines a vell-mosed mathematical problem .

It I~; then possible , by consistently arpiyin~ the above assumption

(7) to both the part ial differential enuations and the boundary
conditions . t. r~ obtain well—posed mathemotical models whose t ime—

dependent scale is suitable for 1 sr~o-seal~ atmospheric flow .

In support of the fIrst hypothesis , the fc l iow1n~ srtecific points are noted :

a) Because of the slow reaction time for 0 , ~t appears that

actual steady-state solutions cannot he reached in the time

scale of these problems. This behavior ci’ 0 needs to he

factored into the physical Interpretat i on of the problem.
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b) In the problem of a wave enterini~ at a lateral boundary,

several factors may significantly affect the profile of

the propagating waves. These factors include the height

of the region of’ entry and t he choice o~’ the upner boundary
- t condition . Mathematically , all solutions seemed reasonable.

Consequently, further evaluation requires more physical input

regarding definition of the problem .

c) In Section IV an example was described in which the solution ,

although reasonable mathematically, did not agree with the
solution for the extended region. Again , physical input

(which was not postulated for this particular set of boundary

conditions ) is required .

In support of t he second hypot hesis , the following specific roints are

noted:

a) The quasisteady model operates on a time-scale suitable for

large-scale atmospheric flow .

b) A-li solutions were shown to be stable and continuously

dependent on the data. (In ref.(l] it was indicated that

convergence In terms of a decreasing mesh size is a test

of stability).

c) All solutions shown appear to have a sensible physical

interpretation. However. In one problem (see i~’ection VI)

an overshoot occurred at a corner point~ this night indicate
that , for this choice of boundary conditions , the quasisteady

limit was not taken correctly.

d) The proposed lateral boundary conditions behaved well and it

was shown that they could he interpreted physically. In

particular , the comparison with solutions for an extended
region was very satisfactory.

28
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